$\left.\left.\begin{array}{|l|l|}\hline \text { Course Title: } & \text { M/J Grade 7 Mathematics } \\ \hline \text { Course Number: } & 1205040 \\ \hline \text { General Notes: } & \begin{array}{l}\text { In grade 7, instructional time will emphasize five areas: } \\ \text { (1) recognizing that fractions, decimals and percentages are different representations of rational numbers and performing all } \\ \text { four operations with rational numbers with procedural fluency; } \\ \text { (2) creating equivalent expressions and solving equations and inequalities; } \\ \text { (3) developing understanding of and applying proportional relationships in two variables; } \\ \text { (4) extending analysis of two- and three-dimensional figures to include circles and cylinders and } \\ \text { (5) representing and comparing categorical and numerical data and developing understanding of probability. }\end{array} \\ & \begin{array}{l}\text { Curricular content for all subjects must integrate critical-thinking, problem-solving, and workforce-literacy skills; } \\ \text { communication, reading, and writing skills; mathematics skills; collaboration skills; contextual and applied-learning skills; } \\ \text { technology-literacy skills; information and media-literacy skills; and civic-engagement skills. }\end{array} \\ \text { English Language Development ELD Standards Special Notes Section: }\end{array}\right\} \begin{array}{l}\text { Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners } \\ \text { (ELL) to communicate information, ideas and concepts for academic success in the content area of Mathematics. For the given } \\ \text { level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level } \\ \text { words, expressions, sentences and discourse to process or produce language necessary for academic success. The ELD } \\ \text { standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which } \\ \text { maximizes an ELL's need for communication and social skills. To access an ELL supporting document which delineates } \\ \text { performance definitions and descriptors, please click on the following link: } \\ \text { https://cpalmsmediaprod.blob.core.windows.net/uploads/docs/standards/eld/ma.pdf }\end{array}\right\}$

Florida's Benchmarks for Excellent Student Thinking (B.E.S.T.) Standards: 7 Mathematical Thinking and Reasoning Standards, 34 Mathematics Benchmarks, 6 English Language Arts Benchmarks and 2 English Language Development Benchmarks

7 Mathematical Thinking and Reasoning Standards		Textbook Section
MA.K12.MTR.1.1:	Mathematicians who participate in effortful learning both individually and with others: - Analyze the problem in a way that makes sense given the task. - Ask questions that will help with solving the task. - Build perseverance by modifying methods as needed while solving a challenging task. - Stay engaged and maintain a positive mindset when working to solve tasks. - Help and support each other when attempting a new method or approach. Clarifications: Teachers who encourage students to participate actively in effortful learning both individually and with others: - Cultivate a community of growth mindset learners. - Foster perseverance in students by choosing tasks that are challenging. - Develop students' ability to analyze and problem solve. - Recognize students' effort when solving challenging problems.	Incorporated Throughout
MA.K12.MTR.2.1:	Demonstrate understanding by representing problems in multiple ways. Mathematicians who demonstrate understanding by representing problems in multiple ways: - Build understanding through modeling and using manipulatives. - Represent solutions to problems in multiple ways using objects, drawings, tables, graphs and equations. - Progress from modeling problems with objects and drawings to using algorithms and equations. - Express connections between concepts and representations. - Choose a representation based on the given context or purpose. Clarifications: Teachers who encourage students to demonstrate understanding by representing problems in multiple ways: - Help students make connections between concepts and representations. - Provide opportunities for students to use manipulatives when investigating concepts. - Guide students from concrete to pictorial to abstract representations as understanding progresses. - Show students that various representations can have different purposes and can be useful in different situations.	Incorporated Throughout

MA.K12.MTR.3.1:	Complete tasks with mathematical fluency. Mathematicians who complete tasks with mathematical fluency: - Select efficient and appropriate methods for solving problems within the given context. - Maintain flexibility and accuracy while performing procedures and mental calculations. - Complete tasks accurately and with confidence. - Adapt procedures to apply them to a new context. - Use feedback to improve efficiency when performing calculations. Clarifications: Teachers who encourage students to complete tasks with mathematical fluency: - Provide students with the flexibility to solve problems by selecting a procedure that allows them to solve efficiently and accurately. - Offer multiple opportunities for students to practice efficient and generalizable methods. - Provide opportunities for students to reflect on the method they used and determine if a more efficient method could have been used.	Incorporated Throughout
MA.K12.MTR.4.1:	Engage in discussions that reflect on the mathematical thinking of self and others. Mathematicians who engage in discussions that reflect on the mathematical thinking of self and others: - Communicate mathematical ideas, vocabulary and methods effectively. - Analyze the mathematical thinking of others. - Compare the efficiency of a method to those expressed by others. - Recognize errors and suggest how to correctly solve the task. - Justify results by explaining methods and processes. - Construct possible arguments based on evidence. Clarifications: Teachers who encourage students to engage in discussions that reflect on the mathematical thinking of self and others: - Establish a culture in which students ask questions of the teacher and their peers, and error is an opportunity for learning. - Create opportunities for students to discuss their thinking with peers. - Select, sequence and present student work to advance and deepen understanding of correct and increasingly efficient methods. - Develop students' ability to justify methods and compare their responses to the responses of their peers.	Incorporated Throughout

MA.K12.MTR.5.1:	Use patterns and structure to help understand and connect mathematical concepts. Mathematicians who use patterns and structure to help understand and connect mathematical concepts: - Focus on relevant details within a problem. - Create plans and procedures to logically order events, steps or ideas to solve problems. - Decompose a complex problem into manageable parts. - Relate previously learned concepts to new concepts. - Look for similarities among problems. - Connect solutions of problems to more complicated large-scale situations. Clarifications: Teachers who encourage students to use patterns and structure to help understand and connect mathematical concepts: - Help students recognize the patterns in the world around them and connect these patterns to mathematical concepts. - Support students to develop generalizations based on the similarities found among problems. - Provide opportunities for students to create plans and procedures to solve problems. - Develop students' ability to construct relationships between their current understanding and more sophisticated ways of thinking.	Incorporated Throughout
MA.K12.MTR.6.1:	Assess the reasonableness of solutions. Mathematicians who assess the reasonableness of solutions: - Estimate to discover possible solutions. - Use benchmark quantities to determine if a solution makes sense. - Check calculations when solving problems. - Verify possible solutions by explaining the methods used. - Evaluate results based on the given context. Clarifications: Teachers who encourage students to assess the reasonableness of solutions: - Have students estimate or predict solutions prior to solving. - Prompt students to continually ask, "Does this solution make sense? How do you know?" - Reinforce that students check their work as they progress within and after a task. - Strengthen students' ability to verify solutions through justifications.	Incorporated Throughout
MA.K12.MTR.7.1:	Apply mathematics to real-world contexts. Mathematicians who apply mathematics to real-world contexts: - Connect mathematical concepts to everyday experiences. - Use models and methods to understand, represent and solve problems.	Incorporated Throughout

	- Perform investigations to gather data or determine if a method is appropriate. • Redesign models and methods to improve accuracy or efficiency. Clarifications: Teachers who encourage students to apply mathematics to real-world contexts: - Provide opportunities for students to create models, both concrete and abstract, and perform investigations. - Challenge students to question the accuracy of their models and methods. - Support students as they validate conclusions by comparing them to the given situation. - Indicate how various concepts can be applied to other disciplines.	
34 B.E.S.T Mathematics Benchmarks		Textbook Section
MA.7.AR.1.1:	Apply properties of operations to add and subtract linear expressions with rational coefficients. Clarifications: Clarification 1: Instruction includes linear expressions in the form $\mathrm{ax} \pm \mathrm{b}$ or $\mathrm{b} \pm \mathrm{ax}$, where a and b are rational numbers. Clarification 2: Refer to Properties of Operations, Equality and Inequality (Appendix D).	4.1-4.8
MA.7.AR.1.2:	Determine whether two linear expressions are equivalent. Clarifications: Clarification 1: Instruction includes using properties of operations accurately and efficiently. Clarification 2: Instruction includes linear expressions in any form with rational coefficients. Clarification 3: Refer to Properties of Operations, Equality and Inequality (Appendix D).	4.2, 4.4, 4.5, 4.8
MA.7.AR.2.1:	Write and solve one-step inequalities in one variable within a mathematical context and represent solutions algebraically or graphically. Clarifications: Clarification 1: Instruction focuses on the properties of inequality. Refer to Properties of Operations, Equality and Inequality (Appendix D). Clarification 2: Instruction includes inequalities in the forms ; ; $\mathrm{x} \pm \mathrm{p}>\mathrm{q}$ and $\mathrm{p} \pm \mathrm{x}>\mathrm{q}$, where p and q are specific rational numbers and any inequality symbol can be represented. Clarification 3: Problems include inequalities where the variable may be on either side of the inequality symbol.	5.3, 5.4

MA.7.AR.2.2:	Write and solve two-step equations in one variable within a mathematical or real-world context, where all terms are rational numbers. Clarifications: Clarification 1: Instruction focuses the application of the properties of equality. Refer to Properties of Operations, Equality and Inequality (Appendix D). Clarification 2: Instruction includes equations in the forms $\mathrm{px} \pm \mathrm{q}=\mathrm{r}$ and $\mathrm{p}(\mathrm{x} \pm \mathrm{q})=\mathrm{r}$, where p, q and r are specific rational numbers. Clarification 3: Problems include linear equations where the variable may be on either side of the equal sign.	$15.1,5.2$
MA.7.AR.3.1:	Apply previous understanding of percentages and ratios to solve multi-step real-world percent problems. Clarifications: Clarification 1: Instruction includes discounts, markups, simple interest, tax, tips, fees, percent increase, percent decrease and percent error.	3.1-3.6
MA.7.AR.3.2:	Apply previous understanding of ratios to solve real-world problems involving proportions.	2.1, 3.2-3.6
MA.7.AR.3.3:	Solve mathematical and real-world problems involving the conversion of units across different measurement systems.	. 4
MA.7.AR.4.1:	Determine whether two quantities have a proportional relationship by examining a table, graph or written description. Clarifications: Clarification 1: Instruction focuses on the connection to ratios and on the constant of proportionality, which is the ratio between two quantities in a proportional relationship.	, 2.2, 2.3, 2.5
MA.7.AR.4.2:	Determine the constant of proportionality within a mathematical or real-world context given a table, graph or written description of a proportional relationship.	2.2, 2.3, 2.5
MA.7.AR.4.3:	Given a mathematical or real-world context, graph proportional relationships from a table, equation or a written description. Clarifications: Clarification 1: Instruction includes equations of proportional relationships in the form of $\mathrm{y}=\mathrm{px}$, where p is the constant of proportionality.	
MA.7.AR.4.4:	Given any representation of a proportional relationship, translate the representation to a written description, table or equation. Clarifications: Clarification 1: Given representations are limited to a written description, graph, table or equation. Clarification 2: Instruction includes equations of proportional relationships in the form of $\mathrm{y}=\mathrm{px}$, where p is the constant of proportionality.	2.3, 2.5

MA.7.AR.4.5:	Solve real-world problems involving proportional relationships.	$3.1,3.2$,
MA.7.DP.1.1:	Determine an appropriate measure of center or measure of variation to summarize numerical data, represented numerically or graphically, taking into consideration the context and any outliers. Clarifications: Clarification 1: Instruction includes recognizing whether a measure of center or measure of variation is appropriate and can be justified based on the given context or the statistical purpose. Clarification 2: Graphical representations are limited to histograms, line plots, box plots and stem-and-leaf plots. Clarification 3: The measure of center is limited to mean and median. The measure of variation is limited to range and interquartile range.	6.4
MA.7.DP.1.2:	Given two numerical or graphical representations of data, use the measure(s) of center and measure(s) of variability to make comparisons, interpret results and draw conclusions about the two populations. Clarifications: Clarification 1: Graphical representations are limited to histograms, line plots, box plots and stem-and-leaf plots. Clarification 2: The measure of center is limited to mean and median. The measure of variation is limited to range and interquartile range.	
MA.7.DP.1.3:	Given categorical data from a random sample, use proportional relationships to make predictions about a population.	6.2
MA.7.DP.1.4:	Use proportional reasoning to construct, display and interpret data in circle graphs. Clarifications: Clarification 1: Data is limited to no more than 6 categories.	6.1
MA.7.DP.1.5:	Given a real-world numerical or categorical data set, choose and create an appropriate graphical representation. Clarifications: Clarification 1: Graphical representations are limited to histograms, bar charts, circle graphs, line plots, box plots and stem-and-leaf plots.	6.6
	Determine the sample space for a simple experiment. Clarifications: Clarification 1: Simple experiments include tossing a fair coin, rolling a fair die, picking a card randomly from a deck, picking marbles randomly from a bag and spinning a fair spinner.	7.1 MA.7.DP.2.1:

MA.7.DP.2.2:	Given the probability of a chance event, interpret the likelihood of it occurring. Compare the probabilities of chance events. Clarifications: Clarification 1: Instruction includes representing probability as a fraction, percentage or decimal between 0 and 1 with probabilities close to 1 corresponding to highly likely events and probabilities close to 0 corresponding to highly unlikely events. Clarification 2: Instruction includes P (event) notation. Clarification 3: Instruction includes representing probability as a fraction, percentage or decimal.	7.1, 7.2
MA.7.DP.2.3:	Find the theoretical probability of an event related to a simple experiment. Clarifications: Clarification 1: Instruction includes representing probability as a fraction, percentage or decimal. Clarification 2: Simple experiments include tossing a fair coin, rolling a fair die, picking a card randomly from a deck, picking marbles randomly from a bag and spinning a fair spinner.	7.2
MA.7.DP.2.4:	Use a simulation of a simple experiment to find experimental probabilities and compare them to theoretical probabilities. Clarifications: Clarification 1: Instruction includes representing probability as a fraction, percentage or decimal. Clarification 2: Instruction includes recognizing that experimental probabilities may differ from theoretical probabilities due to random variation. As the number of repetitions increases experimental probabilities will typically better approximate the theoretical probabilities. Clarification 3: Experiments include tossing a fair coin, rolling a fair die, picking a card randomly from a deck, picking marbles randomly from a bag and spinning a fair spinner.	7.3, 7.4
MA.7.GR.1.1:	Apply formulas to find the areas of trapezoids, parallelograms and rhombi. Clarifications: Clarification 1: Instruction focuses on the connection from the areas of trapezoids, parallelograms and rhombi to the areas of rectangles or triangles. Clarification 2: Within this benchmark, the expectation is not to memorize area formulas for trapezoids, parallelograms and rhombi.	8.1
MA.7.GR.1.2:	Solve mathematical or real-world problems involving the area of polygons or composite figures by decomposing them into triangles or quadrilaterals. Clarifications: Clarification 1: Within this benchmark, the expectation is not to find areas of figures on the coordinate plane or to find missing dimensions.	8.2

MA.7.GR.1.3:	Explore the proportional relationship between circumferences and diameters of circles. Apply a formula for the circumference of a circle to solve mathematical and real-world problems. Clarifications: Clarification 1: Instruction includes the exploration and analysis of circular objects to examine the proportional relationship between circumference and diameter and arrive at an approximation of pi (π) as the constant of proportionality. Clarification 2: Solutions may be represented in terms of pi (π) or approximately.	8.
MA.7.GR.1.4:	Explore and apply a formula to find the area of a circle to solve mathematical and real-world problems. Clarifications: Clarification 1: Instruction focuses on the connection between formulas for the area of a rectangle and the area of a circle. Clarification 2: Problem types include finding areas of fractional parts of a circle. Clarification 3: Solutions may be represented in terms of pi (π) or approximately.	
MA.7.GR.1.5:	Solve mathematical and real-world problems involving dimensions and areas of geometric figures, including scale drawings and scale factors. Clarifications: Clarification 1: Instruction focuses on seeing the scale factor as a constant of proportionality between lorresponding lengths in the scale drawing and the original object. Clarification 2: Instruction includes the understanding that if the scaling factor is k, then the constant of proportionality between corresponding areas is k^{2}. Clarification 3: Problem types include finding the scale factor given a set of dimensions as well as finding dimensions when given a scale factor.	8.5
	Given a mathematical or real-world context, find the surface area of a right circular cylinder using the figure's net. Clarifications: Clarification 1: Instruction focuses on representing a right circular cylinder with its net and on the connection between surface area of a figure and its net. Clarification 2: Within this benchmark, the expectation is to find the surface area when given a net or when given a three-dimensional figure. Clarification 3: Within this benchmark, the expectation is not to memorize the surface area formula for a right circular cylinder. Clarification 4: Solutions may be represented in terms of pi (π) or approximately.	8.6
MA.7.GR.2.1:		

MA.7.GR.2.2:	Solve real-world problems involving surface area of right circular cylinders. Clarifications: Clarification 1: Within this benchmark, the expectation is not to memorize the surface area formula for a right circular cylinder or to find radius as a missing dimension. Clarification 2: Solutions may be represented in terms of pi (π) or approximately.	8.6
MA.7.GR.2.3:	Solve mathematical and real-world problems involving volume of right circular cylinders. Clarifications: Clarification 1: Within this benchmark, the expectation is not to memorize the volume formula for a right circular cylinder or to find radius as a missing dimension. Clarification 2: Solutions may be represented in terms of pi (π) or approximately.	$\left.\right\|^{8.7}$
MA.7.NSO.1.1:	Know and apply the Laws of Exponents to evaluate numerical expressions and generate equivalent numerical expressions, limited to whole-number exponents and rational number bases. Clarifications: Clarification 1: Instruction focuses on building the Laws of Exponents from specific examples. Refer to the K-12 Formulas (Appendix E) for the Laws of Exponents. Clarification 2: Problems in the form must result in a whole-number value for p .	1.5, 1.6
MA.7.NSO.1.2:	Rewrite rational numbers in different but equivalent forms including fractions, mixed numbers, repeating decimals and percentages to solve mathematical and real-world problems.	1.1, 3.1
MA.7.NSO.2.1:	Solve mathematical problems using multi-step order of operations with rational numbers including grouping symbols, whole-number exponents and absolute value. Clarifications: Clarification 1: Multi-step expressions are limited to 6 or fewer steps.	1.3, 1.4, 1.7
MA.7.NSO.2.2:	Add, subtract, multiply and divide rational numbers with procedural fluency.	1.2, 1.3, 1.4, 1.7
MA.7.NSO.2.3:	Solve real-world problems involving any of the four operations with rational numbers. Clarifications: Clarification 1: Instruction includes using one or more operations to solve problems.	$1.2,1.3,1.4,1.7$
6 English Language Arts Benchmarks and 2 English Language Development Benchmarks		Textbook Section
ELA.K12.EE.1.1:	Cite evidence to explain and justify reasoning. Clarifications: 6-8 Students continue with previous skills and use a style guide to create a proper citation.	Incorporated Throughout
ELA.K12.EE.2.1:	Read and comprehend grade-level complex texts proficiently. Clarifications: See Text Complexity for grade-level complexity bands and a text complexity rubric.	Incorporated Throughout

| ELA.K12.EE.3.1: | Make inferences to support comprehension.
 Clarifications:
 Students will make inferences before the words infer or inference are introduced. Kindergarten students
 will answer questions like "Why is the girl smiling?" or make predictions about what will happen based
 on the title page. Students will use the terms and apply them in 2nd grade and beyond. | Incorporated
 Throughout |
| :--- | :--- | :--- | :--- |
| ELA.K12.EE.4.1: | Use appropriate collaborative techniques and active listening skills when engaging in discussions in a
 variety of situations.
 Clarifications:
 In grades 3-12, students engage in academic conversations discussing claims and justifying their
 reasoning, refining and applying skills. Students build on ideas, propel the conversation, and support
 claims and counterclaims with evidence. | Incorporated
 Throughout |
| | Use the accepted rules governing a specific format to create quality work.
 Clarifications:
 Students will incorporate skills learned into work products to produce quality work. For students to
 Encorporate these skills appropriately, they must receive instruction. A 3rd grade student creating a poster
 board display must have instruction in how to effectively present information to do quality work. | Throughout |
| | Use appropriate voice and tone when speaking or writing.
 Clarifications:
 In kindergarten and 1st grade, students learn the difference between formal and informal language. For
 example, the way we talk to our friends differs from the way we speak to adults. In 2nd grade and
 beyond, students practice appropriate social and academic language to discuss texts. | Throughout |
| ELA.K12.EE.6.1: | | |

